
- 1

A New Internet?

Introduction to HTTP/2,
QUIC and DOH
… and more …

ESNOG/GORE21
Barcelona
April 2018

Jordi Palet (jordi.palet@theipv6company.com)

- 2

Internet is Changing
• More and more, Internet traffic is moving from many protocols and

ports to all HTTP and HTTPS (ports 80 and 443)

• Only DNS is not yet using HTTP/HTTPS, however is also coming

• This change is due to many factors, including many networks filtering
“what they don’t know”, so limiting the access to those protocols,
which means that apps are forced to use only those

• The advantage is that by improving “only” those protocols, we can
greatly enhance the Internet performance, instead of requiring
improving “lots” of other protocols

• Also, there is more ”perception” that security and privacy are key, so
we can take the opportunity as well to secure more and more traffic

- 3

From HTTP/1.1 to SPDY
• HTTP was initially defined in 1991, revised in 1999 (HTTP/1.1)

• Web sites have greatly evolved since then
– From few kbytes and objects, to few megabytes and hundreds of objects in a

single page
– HTTP/1.1 doesn’t perform well for the actual situation

• In 2009, Google engineers posted about the SPDY project
– Multiplexing (concurrent requests across a single TCP connection)
– Compress and reduce HTTP headers
– Prioritize assets (vital resources for the correct display of the page could be sent

first)
– “Server push” (the server can push resources to the browser before being asked)

• SPDY is a tunnel for HTTP in HTTPS
– Requires support in both sides (server and browser)
– Support in 2016 was over 90% worldwide
– Uses Next Protocol Negotiation (NPN) to negotiate SPDY with TLS servers

- 4

From SPDY to HTTP/2
• IETF HTTPbis WG, in 2012, used SPDY as starting point for HTTP/2

• RFC7540 (HTTP/2) approved in 2015

• Doesn’t require HTTPS
– Browser vendors only implemented HTTP/2 with TLS (HTTPS)

• “Let’s Encrypt” (https://letsencrypt.org/) is free, automated and open, so solves this “issue”

• With TLS, uses Application Layer Protocol Negotiation (ALPN, RFC7639) to
negotiate HTTP/2 with servers

– Earlier implementations supported NPN because the SPDY support
– Main difference: Who decides what protocol to speak

• NPN -> The client makes de choice
• ALPN -> The client gives the server a list of protocols and the server pick the one it wants

• Global support for implementations
– https://github.com/http2/http2-spec/wiki/Implementations

• Web sites using it, is around 25% worldwide
– https://w3techs.com/technologies/details/ce-http2/all/all
– Because HTTPS is required “de facto”
– However all the “top” web sites use it, so traffic is a much bigger %

- 5

HTTP/1.1 vs HTTP/2

* http://blog.restcase.com/http2-benefits-for-rest-apis/

- 6

HTTP/2 (RFC7540) in Short
• Binary protocol

– Easier framing
– Different frame types, same setup for all

• length, type, flags, stream identifier, frame payload
– 10 different frame types (2 to map HTTP/1.1 features DATA & HEADERS)

• Multiplexed streams
– A stream is an independent bi-directional sequence of frames exchanged

between client and server
• Priorities and dependencies

– Each stream has a priority (“weight”) in case there are server resource limitations,
and allow building ”priority trees” with “child streams dependencies” and
dynamically change those (enhances user experience while browsing)

• Header compression for HTTP/2 (HPACK – RFC7541)
• Reset

– No need to negotiate a new TCP connection and waste bandwidth
• Server push

– Server may try to guess what are “next resources” to be requested by client
• Flow control

– DATA frames controlled, per stream, in the same “style” as in SSH

- 7

HTTP/2 Summary View

* http://blog.restcase.com/http2-benefits-for-rest-apis/

- 8

HTTP/2 Extensions
• Client and server can negotiate new frame types on a

hop-by-hop basis
– Those frames aren’t allowed to change state and aren’t flow controlled
– Subjected to new standards

Alternative services
– Longer TCP connections, may affect load balancers, so may want to tell

the client to connect to another host (performance, site brought to
maintenance, …)

– Server send “Alt-Svc” header (RFC7838 – HTTP Alternative Services)
• Another route to the same content, using another service, host and port

number
• Example: Alt-Svc: h2="new.example.org:80”, h2c=“other.example.org:8080”

– Opportunistic TLS
• The Alt-Svc header allows a server with http to inform the client that the same

content is available over TLS

- 9

Implementing HTTP/2 in Apache
• Example config in Ubuntu Server (>=14.04), Apache (>=2.4)

– MPM event recommended. Never use prefork.

• Install it from Ondřej Surý PPA
$ sudo add-apt-repository ppa:ondrej/apache2
$ sudo apt-get update
$ sudo apt-get upgrade

• Enable HTTPs and related mods
$ cd /etc/apache2/mods-enabled
$ sudo ln -sf ../mods-available/socache_shmcb.* .
$ sudo ln -sf ../mods-available/ssl.* .
$ sudo ln -sf ../mods-available/http2.* .

• You need a VirtualHost with HTTPS (no changes there)
– Your config Directive Protocols h2 h2c http/1.1

• Restart Apache2 & done
$ sudo service apache2 restart

- 10

Implementing HTTP/2 in nginx
• Example config in Ubuntu Server (>=16.04), Luckily (>=1.9.5)

• Modify your website config, should have HTTPS
server {

listen 443 ssl http2 default_server;
ssl_certificate /path/to/server.cert;
ssl_certificate_key /path/to/server.key;
...
Your HTTP server config here
...

}

• Restart nginx & done
$ sudo service nginx restart

- 11

Demo
• Typically 2.5x faster
• https://imagekit.io/demo/http2-vs-http1
• https://youtu.be/QCEid2WCszM

https://imagekit.io/demo/http2-vs-http1
https://youtu.be/QCEid2WCszM

- 12

Chrome Extensions
• HTTP/2 and SPDY indicator

- 13

Firefox Extensions
• HTTP/2 Indicator

- 14

QUIC
• During the SPDY development, it was obvious that TCP is inefficient for

most of the actual Internet usages, so started to work on QUIC (Quick
UDP Internet Connections)

• IETF QUIC WG (2016) is developing a UDP-based, stream-multiplexing,
encrypted transport protocol
– Initial use case: HTTP-over-UDP

• Already deployed by Google, so around 9% of Internet traffic uses it

• QUIC standard requires encryption
– TLS1.3 used to establish session keys and encrypt *ALL* the packets

• Including ACKs

– In actual draft (draft-ietf-quic-transport-08), only few parts of the “short
header” used for all the packets except the handshake, remain unencrypted
(packet number, an optional connection identifier and a byte with some flags
and “packet type”)

• Disallow passive RTT measurement/packet lost
– Proposal for a “spin bit” (draft-trammell-quic-spin) in the header flipping once

per round trip, to allow estimate the RTT

- 15

HTTP vs HTTPS vs QUIC

* https://blog.chromium.org/2015/04/a-quic-update-on-googles-
experimental.html

- 16

QUIC in Short
• Transport over UDP

• Typically implemented in Application Process
– not kernel

• Functionally = TCP + TLS + streams

• Includes TLS 1.3

• Enables 0-RTT

- 17

Comparing Protocol Stacks

- 18

HTTP/2 vs QUICThe IETF Proposal

TLS

HTTP/2

TCP

IP

QUIC

TCP-like congestion
control, loss recovery

UDP

HTTP over QUIC

TLS 1.3

4
* https://www.ietf.org/proceedings/96/slides/slides-96-quic-5.pdf

- 19

Implementing QUIC in servers
• Apache:

– https://cwiki.apache.org/confluence/display/TS/QUIC

• Tracking status of many other implementations:
– https://github.com/quicwg/base-

drafts/wiki/Implementations

• Wireshark has already a QUIC decoder

• Interop test being carried out by IETF

- 20

DOH
• The IETF DNS over HTTPS (DOH) WG, is standardizing the encoding

of DNS queries and responses over HTTPS

• Enable DNS to work over paths where existing methods have issues
(UDP, TLS & DTLS)

• Transport suitable for:
– Traditional DNS clients

– Native web apps that use DNS

• Only using HTTP/2

• Is not “just” a tunnel over HTTP:
– Establishes default media formatting types for requests/responses

– Use normal HTTP content negotiation mechanism for selecting alternatives
that endpoints may prefer (future new use cases)

– Aligned with HTTP features (caching, redirection, proxying, authentication,
compression)

• Avoid that authorities impose traffic discriminations or censorship
– if they wish to do so, with DOH they will need to restrict full access to the

web server providing the DOH

- 21

DOH Implementations
• Generic and tools:

– https://github.com/curl/curl/wiki/DNS-over-HTTPS

• Proxy_DNS (FastCGI endpoint + DNS proxy server)
– https://github.com/BII-Lab/DNSoverHTTP

• Google:
– https://developers.google.com/speed/public-

dns/docs/dns-over-https
– https://dnsprivacy.org/wiki/display/DP/Google%27s+P

ublic+DNS-over-HTTPS

- 22

DNS over QUIC
• Transport privacy for DNS

– draft-huitema-quic-dnsoquic

• QUIC
– Transport over UDP
– Typically implemented in Application Process (not

kernel)
– Functionally = TCP + TLS + streams
– Includes TLS 1.3
– Enables 0-RTT

• DNS over QUIC
– High performance transport

What is DNS over QUIC

DNS	

QUIC	

UDP	

IP	

• QUIC	
•  Transport	over	UDP	
•  Typically	implemented	in	Applica&on	Process,	not	kernel	
•  Func&onally	equivalent	to	TCP	+	TLS	+	streams	
•  Incorporates	TLS	1.3	
•  Enables	0-RTT	

• DNS	over	QUIC	
•  High	performance	transport	
•  Inform	QUIC	development,	in	parallel	with	HTTP/QUIC	

- 23

Comparing DNS “transport”DNS over QUIC: Mo8va8on

UDP	 TCP	 TLS	 DTLS	 QUIC	
Transport	efficiency	

Connec&on	set	up	&me	 �	 �	 �	 �	 0-RTT	
Head	of	queue	blocking	 �	 �	 �	 �	 �	
Retransmission	efficiency	 �	 �	 �	 �	 �	
Long	messages	(DNSSEC)	 �	 �	 �	 �	 �	

Security	
Three	ways	handshake	 �	 �	 �	 �	 �	
Encryp&on	&	Authen&ca&on	 �	 �	 �	 �	 �	

* slides-99-dprive-dns-over-quick

- 24

Conclusions
• HTTP/2 reduce the number of round-trips, avoid blocking

by means of parallel streams and allows discarding
unwanted streams, so a much faster and better web
experience
– “De facto” requires HTTPS, “Let’s Encrypt” to the rescue

• QUIC will decrease latency, avoid packet loss blocking all
the streams (as in HTTP/2) and makes connections
possible with different interfaces (mobility, flapping, …)

• DOH can avoid DNS failures and some censorship
– DNS over QUIC also provides DNS transport privacy

• How all this will impact in non-web traffic and change
Internet?

- 25

Thanks !

Contact:

– Jordi Palet: jordi.palet@theipv6company.com

