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1.- Introduction and Motivation  
 
Network operation, management and optimization are built based on network models. A network 
model is a digital representation of the physical and logical networking infrastructure that it is 
able to understand the complex relationship between the different network characteristics. This 
is also known as digital twin. As examples of digital twins: a twin can estimate what will be the per-link 
utilization for a particular input traffic in a data center, predict the QoE for a set of flows in an access 
network or estimate the resulting network state if a link fails in an ISP network. 
 
Typically, such network models operate in conjunction with management and/or optimization 
algorithms. In such scenarios the network administrator configures the network policy (goals) in the 
algorithms that uses the network model to obtain the configuration that meets the goals.  Then the 
optimization algorithm is tasked to explore the configuration that meets the goals of the network 
administrator. An example of this is Traffic Engineering, where the goal is finding a routing configuration 
that keeps the per-link utilization below the per-link capacity. Since the dimensionality of the 
configuration is typically very large, efficient optimization strategies reduce them by using expert 
knowledge. The networking community has developed over decades a large set of network models and 
optimization strategies [1]. 
 
One of the fundamental characteristics of network operation, management and optimization is that we 
can only operate what we can model. For example, in order to optimize the jitter of the packets 
traversing the network we need a model able to understand how jitter relates to other network 
characteristics. In the field of fixed networks many accurate network models have been developed in 
the past, particularly using Queuing Theory [2][3]. However, such models make some simplifications like 
assuming some non-realistic properties of real-world networks (e.g., generation of traffic with Poisson 
distribution, probabilistic routing)[4]. As a result, they are not accurate for large networks with realistic 
network configurations.  
 
Recent advances in Artificial Intelligence (AI) [5] have led to a new era 
of Machine Learning (ML) techniques such as Deep Learning [6]. This 
has attracted the interest of the networking community to try to take 
advantage of these novel techniques to develop a new breed of 
models, particularly focused on complex network scenarios and/or 
metrics [7]. 
 
In this context relevant research efforts are being devoted into this new 
field. Researchers are using neural networks to model computer 
networks [8], to then employ such models for network optimization 
[9][10], in some cases in combination with advanced strategies based 
on Deep Reinforcement Learning (DRL) [4][11][12]. 
 

“ML applied to Networking 
has not outperformed yet 

traditional mechanisms 
because state-of-the-art 

proposals use neural 
networks that cannot learn 

and model networks. 
Computer networks are 

fundamentally represented 
as graphs (topology, routing, 

etc.)” 
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ML Applied to Networking:
What can we learn from 

Computer Vision?



Computer Vision - A successful application of AI

• Computer Vision automates tasks that 
the human vision can do.

• Excellent research, innovation that 
lead to a breakthrough in products and 
services.

• We aim to apply ML to Networks
Facial Recognition

Self-driving Cars

What can we learn from computer vision?



How does Computer Vision work?

Labeled Dataset
(e.g, ImageNet)

Convolutional Neural Network Trained Model
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ImageNet and AlexNet

• AI research, education or 
innovation requires:

1. A dataset
2. A specific type of neural 

network that can learn the 
structure of the information 
(e.g, images, voice, graphs, etc)

Labeled Dataset
(e.g, ImageNet)

Convolutional Neural Network

1

2



ImageNet and AlexNet

A Dataset: A repository 
of labeled images

A specific type of neural network: 
Convolutional Neural Network

Labeled Dataset
(e.g, ImageNet)

Convolutional Neural Network

1

2



ImageNet

http://www.image-net.org/

Labeled Dataset
(e.g, ImageNet)

1

• A public repository of 14M labeled images
• A fundamental tool for education and research
• Required for benchmarking
• Organize the Large Scale Visual Recognition Challenge

• Competition among top-players in the field (Cambridge, Microsoft, etc)

http://www.image-net.org/


AlexNet
Convolutional Neural Network
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Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.

1 Introduction

Current approaches to object recognition make essential use of machine learning methods. To im-
prove their performance, we can collect larger datasets, learn more powerful models, and use bet-
ter techniques for preventing overfitting. Until recently, datasets of labeled images were relatively
small — on the order of tens of thousands of images (e.g., NORB [16], Caltech-101/256 [8, 9], and
CIFAR-10/100 [12]). Simple recognition tasks can be solved quite well with datasets of this size,
especially if they are augmented with label-preserving transformations. For example, the current-
best error rate on the MNIST digit-recognition task (<0.3%) approaches human performance [4].
But objects in realistic settings exhibit considerable variability, so to learn to recognize them it is
necessary to use much larger training sets. And indeed, the shortcomings of small image datasets
have been widely recognized (e.g., Pinto et al. [21]), but it has only recently become possible to col-
lect labeled datasets with millions of images. The new larger datasets include LabelMe [23], which
consists of hundreds of thousands of fully-segmented images, and ImageNet [6], which consists of
over 15 million labeled high-resolution images in over 22,000 categories.

To learn about thousands of objects from millions of images, we need a model with a large learning
capacity. However, the immense complexity of the object recognition task means that this prob-
lem cannot be specified even by a dataset as large as ImageNet, so our model should also have lots
of prior knowledge to compensate for all the data we don’t have. Convolutional neural networks
(CNNs) constitute one such class of models [16, 11, 13, 18, 15, 22, 26]. Their capacity can be con-
trolled by varying their depth and breadth, and they also make strong and mostly correct assumptions
about the nature of images (namely, stationarity of statistics and locality of pixel dependencies).
Thus, compared to standard feedforward neural networks with similarly-sized layers, CNNs have
much fewer connections and parameters and so they are easier to train, while their theoretically-best
performance is likely to be only slightly worse.

1

• A pioneering Convolutional Neural Network
• A breakthrough in Computer Vision
• 40k citations (most cited papers in 

Computer Sciences)
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Requirement Expertise 

ML applied to Networking 

The team at BNN-UPC has pioneered the Knowledge-Defined 
Networking [7] paradigm, one of the first public proposals of ML 
applied to Networking. This was done in collaboration with UC 
Berkeley, Cisco, HPE, NTT, Brocade and Intel. In addition, the team 
has also pioneered the first GNN applied to networking [15], along its 
open-source implementation [16]. 
With this, the team at BNN-UPC has shown a track-record of 
pioneering and leading the field of ML applied to Networking. 

Data-Sets 

Prof. Pere Barlet has extensive experience in collecting and 
publishing machine learning datasets. The traffic classification 
datasets [34] have been extensively used in scientific works and 
enabled novel research in the field of machine learning for network 
traffic classification. So far, these data sets have been shared with 
more than 100 researchers from all over the world, which resulted in 
more than 300 citations in scientific papers.  

Test-Beds 

Both Prof. Albert Cabellos and Albert Lopez (Head of Engineering at 
BNN-UPC) have extensive experience in building and managing large 
datasets: LISP Beta Network (https://www.lisp4.net/beta-network/). 
At its peak, the testbed spaned 27 countries with an infrastructure of 
20+routers and over 500 members around the world, including 
companies such as NTT, Facebook and Microsoft. 

Building a Research Center 

Prof. Albert Cabellos co-founded the NaNoNetworking Center in 
Catalunya (N3Cat, n3cat.upc.edu), a research center on future 
networks that hosts 15 researchers and attracted over 2M€ in public 
and private funding. Thanks to collaborations with MIT, KTH, RWTH 
Aachen, UIUC, Samsung or Intel, N3Cat has carried out outstanding 
research that has been awarded 6 times by academia and industry. 

  
 
5.- Impact  
 
Machine learning in general, and machine learning applied to networking in particular, requires both 
the right algorithm for the problem at hand and a comprehensive data set to train the algorithm. 
Then, and only then, machine learning can be impactful. The Barcelona Neural Networking Center aims 
to disrupt the field of networking by demonstrating the unique suitability of GNNs for networking 
problems (RouteNet) and creating a suitable data set (DataNet) that, currently, does not exist.   
 
Computer vision is a perfect recent example of a 
field where the combination of the right algorithm 
and a large data set has been disruptive. 
Traditionally, applications of computer vision 
required careful engineering and considerable 
domain expertise to extract solutions that, in the 
end, were not accurate. This changed completely 
after Yann LeCun proposed the first Convolutional 
Neural Network (CNN) architecture in 1990 [18], 
which quickly became the reference algorithm for 
handwritten recognition. The real breakthrough of 
CNNs in computer vision, however, came in the early 

2010s with the 
increased 

availability of 
labeled data. The 
main trigger was the creation of ImageNet data set and the associated 
ILSVRC challenge [17], which currently stand as the worldwide 

 
Figure 2.- Yearly results of the ILSCVR 

Computer Vision challenge 
 

“GNN and DataNet will be 
to ML applied to networks 
what CNNs and ImageNet 
have been to computer 
vision” 

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with
deep convolutional neural networks." Advances in neural information processing
systems. 2012.



ImageNet and AlexNet

ImageNet

AlexNet

Labeled Dataset
(e.g, ImageNet)

Convolutional Neural Network

1

2



Barcelona Neural Networking Center

• Our goal is to become the enablers in the
application of ML to networking

• How?

• What is our competitive advantage?
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Graph Neural Networks

Build AlexNet and ImageNet
of Computer Networks



What are 
Graph Neural Networks?



ML applied to Networking

The main reason for this is that standard Neural Networks 
are not suited to learn information structured as a graph

• So far we have failed to learn Computer Networks (e.g)
• Valadarsky, A., Schapira, M., Shahaf, D., & Tamar, A. (2017, November). Learning to route. In Proceedings of the 16th ACM Workshop 

on Hot Topics in Networks (pp. 185-191). ACM.
• Chen, X., Guo, J., Zhu, Z., Proietti, R., Castro, A., & Yoo, S. J. B. (2018, March). Deep-RMSA: A Deep-Reinforcement-Learning Routing, 

Modulation and Spectrum Assignment Agent for Elastic Optical Networks. In 2018 Optical Fiber Communications Conference and 
Exposition (OFC) (pp. 1-3). IEEE.

• Poor performance, in some cases worse than simple well-known 
heuristics

• Ad-hoc solutions tailored to specific problems, in some cases 
transforming the problem to prevent learning graphs



Graph Neural Networks
• Networks are graphs:

• Routing
• Topology
• Etc.

• Learning Graphs with 
Fully Connected Neural 
Networks is very 
complex

• Academics have 
repeatedly failed to 
achieve this
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https://arxiv.org/pdf/1901.08113.pdf

Rusek, K., Suárez-Varela, J., Mestres, A., Barlet-Ros, P. and Cabellos-Aparicio, A., 2019. Unveiling the potential of Graph
Neural Networks for network modeling and optimization in SDN. In ACM SOSR 2019

https://arxiv.org/pdf/1901.08113.pdf


Graph Neural Networks (GNN)

• GNN have been recently proposed by DeepMind et al. to learn and 
model information structured as a graph

• Each application has developed their own NN architectures 
• Fully Connected = Units à General application (non-linear regression)
• CNN = Grid elements à Images
• RNN = Sequences à Text processing, Time-Series
• GNN = Nodes +  Edges à Networks

Battaglia, Peter W., et al. "Relational inductive biases, deep learning, and graph networks." arXiv preprint 
arXiv:1806.01261(2018).



RouteNet: The first GNN for Computer Networks

• RouteNet is the first Graph Neural Network for Computer Networks
• It learns the relationship between topology, traffic, routing and the 

resulting performance of the network
• Generalizes to unseen topologies, routings and traffics

Unveiling the potential of GNN for network modeling and optimization in SDN , ,

Figure 1: Architecture for network optimization

achieved by means of “conventional” SDN-based measure-
ment techniques (e.g., OpenFlow [19], OpenSketch [30]) or
more novel telemetry proposals such as INT for P4 [15] or
iOAM [1]. Likewise, in the knowledge plane there is an op-
timizer whose behavior is de�ned by a given target policy.
This policy, in line with intent-based networking, may be
de�ned by a declarative language such as NEMO [2] and
�nally is translated to a (multi-objective) network optimiza-
tion problem. In this point, an accurate network model can
play a crucial role in the optimization process. This way, the
optimizer can bene�t from this model to run optimization
algorithms (e.g., hill-climbing) that iteratively explore the
performance of candidate solutions in order to �nd the opti-
mal con�guration. We intentionally leave out of the scope
of this architecture the training phase.

To be successful in scenarios like the one proposed above,
the network model should meet two main requirements: (i)
Provide accurate results, and (ii) have a low computational
cost to allow network optimizers to operate in short time
scales. Moreover, it is essential for optimizers to have enough
�exibility to simulate what-if scenarios involving di�erent
routing schemes, changes in the topology and variations
in the tra�c matrix. To this end, we rely on the capability
of Graph Neural Network (GNN) models to operate on en-
vironments represented as graphs. Our GNN-based model,
RouteNet (Fig. 2), inspired by the Message-Passing Neural
Network [12] used in the chemistry �eld, is able to propa-
gate any routing scheme (i.e., relationships between links
and end-to-end paths) throughout network topologies. Like-
wise, it uses information from the tra�c matrix (de�ned as
the bandwidth between each pair of nodes in the network)
to abstract relevant information of the current network state.
In Sec. 5, we provide some relevant use-cases with experi-
ments that exhibit how can bene�t from this GNN model for
di�erent network-related problems.

Graph Neural 
Network model

Routing scheme

Traffic matrix Performance metrics
(per-path delays, jitter)

Topology

Figure 2: Scheme of RoutNet - our GNN-based model.

3 NETWORK MODELINGWITH GNN
In this section, we provide a detailed mathematical descrip-
tion of RouteNet, the GNN-based model proposed in this
paper and designed speci�cally to operate in networking
scenarios.

3.1 Notation
A computer network can be represented by a set of links
N = {li }, i 2 (0, 1, . . . ,nl ), and the routing scheme in the
network by a set paths R = {pk } k 2 (0, 1, . . . ,np ). Each
path is a sequence of links pk = (lk (0), . . . , lk ( |pk |)), where
k(i) is the index of the i-th link in the path k . The properties
(features) of both links and paths are denoted by xli and xpi
The matrixA represents point to point tra�c in the network,
while the corresponding delay is represented by a matrix D.

3.2 Message Passing on Paths
Let us consider the delay on a path pk = (lk(0), lk (1), lk (2) . . .).
It is a sum

Õ
i d(lk (i))where the function d(lj ) gives the delay

on j-th physical link. The state of the physical link (and the
delay indirectly) on the other hand depends on all the tra�c
passing through that link. If packet loss is negligible the
order of links in the path doesn’t matter. On the other hand,
the lossy link introduces sequential dependence between
link states.

Let the state of a link be described by hli i.e. an unknown
hidden vector. In the similar way the state (information
about) of the path is described by hpi . We expect the link state
vector to contain the information like the link delay, packet
loss rate, link utilization etc. The path state is expected to
contain the information about the end to end connection
parameters like the delay or the total loss. From the previous
paragraph we can state the following principles

1) State of a path depends on the states of all the links in
the path.

2) State of a link depends on the states of all the paths
containing that link.

Those principles can be formulated in a mathematical way
as

hli = f (hp1 , . . . , hpj ), li 2 pk ,k = 1, . . . , j (1)
hpk = �(hlk (0) , . . . , hlk (|pk |) ) (2)

where f and � are some functions.

https://arxiv.org/pdf/1901.08113.pdf

Rusek, K., Suárez-Varela, J., Mestres, A., Barlet-Ros, P. and Cabellos-Aparicio, A., 2019. Unveiling the
potential of Graph Neural Networks for network modeling and optimization in SDN. In ACM SOSR 2019

https://arxiv.org/pdf/1901.08113.pdf


How does RouteNet work?



• Digital Twin is a digital 
representation of the network

• RouteNet is a Digital Twin of the 
networking infrastructure

• Useful to:
• What-if scenarios: 

• predict losses for a particular traffic 
load

• What happens if a link fails?

• Optimal configurations: 
• Best routing configuration to load-

balance utilization

• Network Planning

RouteNet: A Digital Network Twin
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RouteNet: A Digital Twin of the Network
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RouteNet: A Digital Twin of the Network
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paragraph we can state the following principles

1) State of a path depends on the states of all the links in
the path.

2) State of a link depends on the states of all the paths
containing that link.

Those principles can be formulated in a mathematical way
as

hli = f (hp1 , . . . , hpj ), li 2 pk ,k = 1, . . . , j (1)
hpk = �(hlk (0) , . . . , hlk (|pk |) ) (2)

where f and � are some functions.
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achieved by means of “conventional” SDN-based measure-
ment techniques (e.g., OpenFlow [19], OpenSketch [30]) or
more novel telemetry proposals such as INT for P4 [15] or
iOAM [1]. Likewise, in the knowledge plane there is an op-
timizer whose behavior is de�ned by a given target policy.
This policy, in line with intent-based networking, may be
de�ned by a declarative language such as NEMO [2] and
�nally is translated to a (multi-objective) network optimiza-
tion problem. In this point, an accurate network model can
play a crucial role in the optimization process. This way, the
optimizer can bene�t from this model to run optimization
algorithms (e.g., hill-climbing) that iteratively explore the
performance of candidate solutions in order to �nd the opti-
mal con�guration. We intentionally leave out of the scope
of this architecture the training phase.

To be successful in scenarios like the one proposed above,
the network model should meet two main requirements: (i)
Provide accurate results, and (ii) have a low computational
cost to allow network optimizers to operate in short time
scales. Moreover, it is essential for optimizers to have enough
�exibility to simulate what-if scenarios involving di�erent
routing schemes, changes in the topology and variations
in the tra�c matrix. To this end, we rely on the capability
of Graph Neural Network (GNN) models to operate on en-
vironments represented as graphs. Our GNN-based model,
RouteNet (Fig. 2), inspired by the Message-Passing Neural
Network [12] used in the chemistry �eld, is able to propa-
gate any routing scheme (i.e., relationships between links
and end-to-end paths) throughout network topologies. Like-
wise, it uses information from the tra�c matrix (de�ned as
the bandwidth between each pair of nodes in the network)
to abstract relevant information of the current network state.
In Sec. 5, we provide some relevant use-cases with experi-
ments that exhibit how can bene�t from this GNN model for
di�erent network-related problems.

Figure 2: Scheme of RoutNet - our GNN-based model.

3 NETWORK MODELINGWITH GNN
In this section, we provide a detailed mathematical descrip-
tion of RouteNet, the GNN-based model proposed in this
paper and designed speci�cally to operate in networking
scenarios.

3.1 Notation
A computer network can be represented by a set of links
N = {li }, i 2 (0, 1, . . . ,nl ), and the routing scheme in the
network by a set paths R = {pk } k 2 (0, 1, . . . ,np ). Each
path is a sequence of links pk = (lk (0), . . . , lk ( |pk |)), where
k(i) is the index of the i-th link in the path k . The properties
(features) of both links and paths are denoted by xli and xpi
The matrixA represents point to point tra�c in the network,
while the corresponding delay is represented by a matrix D.

3.2 Message Passing on Paths
Let us consider the delay on a path pk = (lk(0), lk (1), lk (2) . . .).
It is a sum

Õ
i d(lk (i))where the function d(lj ) gives the delay

on j-th physical link. The state of the physical link (and the
delay indirectly) on the other hand depends on all the tra�c
passing through that link. If packet loss is negligible the
order of links in the path doesn’t matter. On the other hand,
the lossy link introduces sequential dependence between
link states.

Let the state of a link be described by hli i.e. an unknown
hidden vector. In the similar way the state (information
about) of the path is described by hpi . We expect the link state
vector to contain the information like the link delay, packet
loss rate, link utilization etc. The path state is expected to
contain the information about the end to end connection
parameters like the delay or the total loss. From the previous
paragraph we can state the following principles

1) State of a path depends on the states of all the links in
the path.

2) State of a link depends on the states of all the paths
containing that link.

Those principles can be formulated in a mathematical way
as

hli = f (hp1 , . . . , hpj ), li 2 pk ,k = 1, . . . , j (1)
hpk = �(hlk (0) , . . . , hlk (|pk |) ) (2)

where f and � are some functions.
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It is known that neural networks are universal function
approximators. However, a direct approximation of those
functions is not possible since: 1) Equations (1) and (2) de�ne
an implicit function (a nonlinear system of equationswith the
states being the hidden variables) 2) The functions depend
on the routing; 3) The dimensionality of each function is very
high so a large amount of training samples would be required;
Our goal is to provide the routing invariant (yet routing
aware) structure for f and�. For this purpose, we propose the
RouteNet - a neural architecture based on message-passing
neural networks (MPNN) [12] used in quantum chemistry
and being a case of a Graph Neural Network.

The inference (forward pass) of the network is presented
in Algorithm 1. The network takes the path and link features
xp , xl and the routing description R as an input and outputs
the predicted path variable (delay or jitter). Note that we
simpli�ed the notation by dropping sub-index and indexing
states and features by the paths and links itself.

Input: xp , xl ,R
Output: hTp , hTl , ŷp

1 foreach p 2 R do
2 h0p  [xp , 0 . . . , 0]
3 end
4 foreach l 2 N do
5 h0l  [xl , 0 . . . , 0]
6 end
7 for t = 1 to T do
8 foreach p 2 R do
9 foreach l 2 p do

10 htp  RNNt (htp , htl )
11 m̃t+1

p,l  htp
12 end
13 ht+1p  htp
14 end
15 foreach l 2 N do
16 mt+1

l  Õ
p :l 2p m̃t+1

p,l

17 ht+1l  Ut

⇣
htl ,m

t+1
l

⌘
18 end
19 end
20 ŷp  Fp (hp )
Algorithm 1: RouteNet – a GNN architecture for routing

RouteNet architecture solves all the problems with the
equations (1) and (2). The problem with implicit functions
(circular dependencies) is common in GNN and it is solved by
a direct or approximate �xed point solution of (1) and (2). In
the RouteNet, the loop in line 7 repeats the same operations
on state vectors T times. These steps represent convergence

to the �xed point of a function from the initial states de�ned
by the loops from lines 3 and 6. This solves the �rst problem.

The second problem (routing invariance) is also common
in GNN. In this context it is known as topology invariance.
Graphs of di�erent topologies have to be represented by a
topology invariant structure. In the same way we want to
represent di�erent routings in an uniform way. The state-of-
the-art solution of this problem is the neural message passing
architecture that combines both: topology representation and
explicit state vectors representation. The RouteNet architec-
ture can be seen as an extension of vanilla message passing
neural network taking into account the two principles about
state dependence in the network.

In the Algorithm 1 the loop from from line 9 and the line 16
are the message-passing operations that allows the links and
paths to exchange the information extracted by a neural
network RNN . The lines 11 and 17 are the update operation
that encode the information in the hidden state. The path
update is a simple assignment, while the link update is a
trainable neural network. In general path update also could
be trainable neural network.

This architecture is highly �exible when it comes to rout-
ing representation. In the model, routing works just like in a
real network. It decides where to send the message. Accord-
ing to the �rst principle, each path receives messages from
all of the links in it (the loop in line 9). Similarly each link
receives messages from all the paths containing it (the sum
in line 16).

Since order of paths does not matter, we used simple sum-
mation for path message aggregation. On the other hand se-
quential dependence between links in the same path caused
by the losses requires more sophisticated message aggrega-
tion. For this we use a Recurrent Neural Network (RNN).

For an input sequence i1, i2, . . . and the initial hidden state
s0 the RNN output is a sequence de�ned as

(ot , st ) = RNN (st�1, it ).
In our model we assume a simpler version of an RNN, where
ot = st . RNNs are able to capture dependence in the sequence
and are commonly used for text processing. In the RouteNet
a RNN is used to produce the message from the link to the
containing path. This allows us to model the sequential de-
pendence between links and propagate information about
losses through the path. If packet loss is small or none the
order of links in the path does not matter and the RNN can
be replaced by a simple summation.

Additional bene�t of using RNN (or simple summation for
that matter) for the message function is that we get for free
the solution of the third problem with (1) and (2). All build-
ing blocks of RouteNet take as an input either a hidden state
or a message. Dimensionality of both are the hyper parame-
ters of the model, thus dimensionality of the problem was

• RoueNet models the relationship between links and paths
• State of a links depends on the paths that traverse that link
• State of a paths depends on the links of that path

• This is a circular dependency
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achieved by means of “conventional” SDN-based measure-
ment techniques (e.g., OpenFlow [19], OpenSketch [30]) or
more novel telemetry proposals such as INT for P4 [15] or
iOAM [1]. Likewise, in the knowledge plane there is an op-
timizer whose behavior is de�ned by a given target policy.
This policy, in line with intent-based networking, may be
de�ned by a declarative language such as NEMO [2] and
�nally is translated to a (multi-objective) network optimiza-
tion problem. In this point, an accurate network model can
play a crucial role in the optimization process. This way, the
optimizer can bene�t from this model to run optimization
algorithms (e.g., hill-climbing) that iteratively explore the
performance of candidate solutions in order to �nd the opti-
mal con�guration. We intentionally leave out of the scope
of this architecture the training phase.

To be successful in scenarios like the one proposed above,
the network model should meet two main requirements: (i)
Provide accurate results, and (ii) have a low computational
cost to allow network optimizers to operate in short time
scales. Moreover, it is essential for optimizers to have enough
�exibility to simulate what-if scenarios involving di�erent
routing schemes, changes in the topology and variations
in the tra�c matrix. To this end, we rely on the capability
of Graph Neural Network (GNN) models to operate on en-
vironments represented as graphs. Our GNN-based model,
RouteNet (Fig. 2), inspired by the Message-Passing Neural
Network [12] used in the chemistry �eld, is able to propa-
gate any routing scheme (i.e., relationships between links
and end-to-end paths) throughout network topologies. Like-
wise, it uses information from the tra�c matrix (de�ned as
the bandwidth between each pair of nodes in the network)
to abstract relevant information of the current network state.
In Sec. 5, we provide some relevant use-cases with experi-
ments that exhibit how can bene�t from this GNN model for
di�erent network-related problems.

Figure 2: Scheme of RoutNet - our GNN-based model.

3 NETWORK MODELINGWITH GNN
In this section, we provide a detailed mathematical descrip-
tion of RouteNet, the GNN-based model proposed in this
paper and designed speci�cally to operate in networking
scenarios.

3.1 Notation
A computer network can be represented by a set of links
N = {li }, i 2 (0, 1, . . . ,nl ), and the routing scheme in the
network by a set paths R = {pk } k 2 (0, 1, . . . ,np ). Each
path is a sequence of links pk = (lk (0), . . . , lk ( |pk |)), where
k(i) is the index of the i-th link in the path k . The properties
(features) of both links and paths are denoted by xli and xpi
The matrixA represents point to point tra�c in the network,
while the corresponding delay is represented by a matrix D.

3.2 Message Passing on Paths
Let us consider the delay on a path pk = (lk(0), lk (1), lk (2) . . .).
It is a sum

Õ
i d(lk (i))where the function d(lj ) gives the delay

on j-th physical link. The state of the physical link (and the
delay indirectly) on the other hand depends on all the tra�c
passing through that link. If packet loss is negligible the
order of links in the path doesn’t matter. On the other hand,
the lossy link introduces sequential dependence between
link states.

Let the state of a link be described by hli i.e. an unknown
hidden vector. In the similar way the state (information
about) of the path is described by hpi . We expect the link state
vector to contain the information like the link delay, packet
loss rate, link utilization etc. The path state is expected to
contain the information about the end to end connection
parameters like the delay or the total loss. From the previous
paragraph we can state the following principles

1) State of a path depends on the states of all the links in
the path.

2) State of a link depends on the states of all the paths
containing that link.

Those principles can be formulated in a mathematical way
as

hli = f (hp1 , . . . , hpj ), li 2 pk ,k = 1, . . . , j (1)
hpk = �(hlk (0) , . . . , hlk (|pk |) ) (2)

where f and � are some functions.
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It is known that neural networks are universal function
approximators. However, a direct approximation of those
functions is not possible since: 1) Equations (1) and (2) de�ne
an implicit function (a nonlinear system of equationswith the
states being the hidden variables) 2) The functions depend
on the routing; 3) The dimensionality of each function is very
high so a large amount of training samples would be required;
Our goal is to provide the routing invariant (yet routing
aware) structure for f and�. For this purpose, we propose the
RouteNet - a neural architecture based on message-passing
neural networks (MPNN) [12] used in quantum chemistry
and being a case of a Graph Neural Network.

The inference (forward pass) of the network is presented
in Algorithm 1. The network takes the path and link features
xp , xl and the routing description R as an input and outputs
the predicted path variable (delay or jitter). Note that we
simpli�ed the notation by dropping sub-index and indexing
states and features by the paths and links itself.

Input: xp , xl ,R
Output: hTp , hTl , ŷp

1 foreach p 2 R do
2 h0p  [xp , 0 . . . , 0]
3 end
4 foreach l 2 N do
5 h0l  [xl , 0 . . . , 0]
6 end
7 for t = 1 to T do
8 foreach p 2 R do
9 foreach l 2 p do

10 htp  RNNt (htp , htl )
11 m̃t+1

p,l  htp
12 end
13 ht+1p  htp
14 end
15 foreach l 2 N do
16 mt+1

l  Õ
p :l 2p m̃t+1

p,l

17 ht+1l  Ut

⇣
htl ,m

t+1
l

⌘
18 end
19 end
20 ŷp  Fp (hp )
Algorithm 1: RouteNet – a GNN architecture for routing

RouteNet architecture solves all the problems with the
equations (1) and (2). The problem with implicit functions
(circular dependencies) is common in GNN and it is solved by
a direct or approximate �xed point solution of (1) and (2). In
the RouteNet, the loop in line 7 repeats the same operations
on state vectors T times. These steps represent convergence

to the �xed point of a function from the initial states de�ned
by the loops from lines 3 and 6. This solves the �rst problem.

The second problem (routing invariance) is also common
in GNN. In this context it is known as topology invariance.
Graphs of di�erent topologies have to be represented by a
topology invariant structure. In the same way we want to
represent di�erent routings in an uniform way. The state-of-
the-art solution of this problem is the neural message passing
architecture that combines both: topology representation and
explicit state vectors representation. The RouteNet architec-
ture can be seen as an extension of vanilla message passing
neural network taking into account the two principles about
state dependence in the network.

In the Algorithm 1 the loop from from line 9 and the line 16
are the message-passing operations that allows the links and
paths to exchange the information extracted by a neural
network RNN . The lines 11 and 17 are the update operation
that encode the information in the hidden state. The path
update is a simple assignment, while the link update is a
trainable neural network. In general path update also could
be trainable neural network.

This architecture is highly �exible when it comes to rout-
ing representation. In the model, routing works just like in a
real network. It decides where to send the message. Accord-
ing to the �rst principle, each path receives messages from
all of the links in it (the loop in line 9). Similarly each link
receives messages from all the paths containing it (the sum
in line 16).

Since order of paths does not matter, we used simple sum-
mation for path message aggregation. On the other hand se-
quential dependence between links in the same path caused
by the losses requires more sophisticated message aggrega-
tion. For this we use a Recurrent Neural Network (RNN).

For an input sequence i1, i2, . . . and the initial hidden state
s0 the RNN output is a sequence de�ned as

(ot , st ) = RNN (st�1, it ).
In our model we assume a simpler version of an RNN, where
ot = st . RNNs are able to capture dependence in the sequence
and are commonly used for text processing. In the RouteNet
a RNN is used to produce the message from the link to the
containing path. This allows us to model the sequential de-
pendence between links and propagate information about
losses through the path. If packet loss is small or none the
order of links in the path does not matter and the RNN can
be replaced by a simple summation.

Additional bene�t of using RNN (or simple summation for
that matter) for the message function is that we get for free
the solution of the third problem with (1) and (2). All build-
ing blocks of RouteNet take as an input either a hidden state
or a message. Dimensionality of both are the hyper parame-
ters of the model, thus dimensionality of the problem was

• RoueNet models the relationship between links and paths
• State of a links depends on the paths that traverse that link
• State of a paths depends on the links of that path

Graph Neural Networks are not a black-box and require a 
custom architecture for each problem we are modeling. 
This needs to be done by a ML & Networking expert.



How accurate is RouteNet?



RouteNet: Dataset

• Dataset obtained with simulation
• Omnet++
• Event per-packet simulator that considers 

queuing

• Trained with the NSFnet 14-node topology
• 260k samples of random (uniform)

• Traffic Matrices
• Routing Configurations
• Resulting per-packet average delay, jitter and 

losses

NSFnet Topology



RouteNet: Accuracy

• RouteNet achieves good accuracy
• The Readout is use as dropout to 

prevent overfitting
• Transfer learning is used to 

improve learning for jitter and 
drops.



RouteNet: Generalization

• What happens when we evaluate 
RouteNet with an unseen
topology?

• We tested RouteNet with the 24-
node Geant topology

• RouteNet produces accurate 
estimates for an unseen 
topologies.

RouteNet can generalize to unseen 
topologies, routings and traffic matrices.

Geant Topology



How can we use RouteNet
for Netwok Optimization?
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achieved by means of “conventional” SDN-based measure-
ment techniques (e.g., OpenFlow [19], OpenSketch [30]) or
more novel telemetry proposals such as INT for P4 [15] or
iOAM [1]. Likewise, in the knowledge plane there is an op-
timizer whose behavior is de�ned by a given target policy.
This policy, in line with intent-based networking, may be
de�ned by a declarative language such as NEMO [2] and
�nally is translated to a (multi-objective) network optimiza-
tion problem. In this point, an accurate network model can
play a crucial role in the optimization process. This way, the
optimizer can bene�t from this model to run optimization
algorithms (e.g., hill-climbing) that iteratively explore the
performance of candidate solutions in order to �nd the opti-
mal con�guration. We intentionally leave out of the scope
of this architecture the training phase.

To be successful in scenarios like the one proposed above,
the network model should meet two main requirements: (i)
Provide accurate results, and (ii) have a low computational
cost to allow network optimizers to operate in short time
scales. Moreover, it is essential for optimizers to have enough
�exibility to simulate what-if scenarios involving di�erent
routing schemes, changes in the topology and variations
in the tra�c matrix. To this end, we rely on the capability
of Graph Neural Network (GNN) models to operate on en-
vironments represented as graphs. Our GNN-based model,
RouteNet (Fig. 2), inspired by the Message-Passing Neural
Network [12] used in the chemistry �eld, is able to propa-
gate any routing scheme (i.e., relationships between links
and end-to-end paths) throughout network topologies. Like-
wise, it uses information from the tra�c matrix (de�ned as
the bandwidth between each pair of nodes in the network)
to abstract relevant information of the current network state.
In Sec. 5, we provide some relevant use-cases with experi-
ments that exhibit how can bene�t from this GNN model for
di�erent network-related problems.

Graph Neural 
Network model

Routing scheme

Traffic matrix Performance metrics
(per-path delays, jitter)

Topology

Figure 2: Scheme of RoutNet - our GNN-based model.

3 NETWORK MODELINGWITH GNN
In this section, we provide a detailed mathematical descrip-
tion of RouteNet, the GNN-based model proposed in this
paper and designed speci�cally to operate in networking
scenarios.

3.1 Notation
A computer network can be represented by a set of links
N = {li }, i 2 (0, 1, . . . ,nl ), and the routing scheme in the
network by a set paths R = {pk } k 2 (0, 1, . . . ,np ). Each
path is a sequence of links pk = (lk (0), . . . , lk ( |pk |)), where
k(i) is the index of the i-th link in the path k . The properties
(features) of both links and paths are denoted by xli and xpi
The matrixA represents point to point tra�c in the network,
while the corresponding delay is represented by a matrix D.

3.2 Message Passing on Paths
Let us consider the delay on a path pk = (lk(0), lk (1), lk (2) . . .).
It is a sum

Õ
i d(lk (i))where the function d(lj ) gives the delay

on j-th physical link. The state of the physical link (and the
delay indirectly) on the other hand depends on all the tra�c
passing through that link. If packet loss is negligible the
order of links in the path doesn’t matter. On the other hand,
the lossy link introduces sequential dependence between
link states.

Let the state of a link be described by hli i.e. an unknown
hidden vector. In the similar way the state (information
about) of the path is described by hpi . We expect the link state
vector to contain the information like the link delay, packet
loss rate, link utilization etc. The path state is expected to
contain the information about the end to end connection
parameters like the delay or the total loss. From the previous
paragraph we can state the following principles

1) State of a path depends on the states of all the links in
the path.

2) State of a link depends on the states of all the paths
containing that link.

Those principles can be formulated in a mathematical way
as

hli = f (hp1 , . . . , hpj ), li 2 pk ,k = 1, . . . , j (1)
hpk = �(hlk (0) , . . . , hlk (|pk |) ) (2)

where f and � are some functions.



RouteNet: Delay/Jitter Routing Optimization
• Find routes that optimize

maximum delay/jitter/drops
for each source-destination
pair in the network.

• In the presence of link-
failures

• Only consider variations of
shortest-path routing

• Compaired against common
approaches



RouteNet: SLA optimization

• Keep delay/jitter/drops
below a certain SLA treshold
for premium users in the
presence of growing overall
traffic.

• Only consider variations of 
shortest-path routing

• Compaired against common
approaches



RouteNet: Network Planning
• When to upgrade the

network?
• Given a certain organic

growth of users, when the
delay/jitter/losses will be 
above a certain threshold?

• What link to upgrade?
• What is the optimal link to 

upgrade to improve 
performance?



Graph Neural Networking

• CNNs are to Computer Vision what 
GNNs to Computer Networks

• RouteNet represents AlexNet
• But we don´t have ImageNet?

Convolutional 
Neural 

Networks

Graph Neural 
Networks

Computer 
Vision

Computer 
Networks

RouteNetAlexNet We need a data-set for 
Computer Networks 

ImageNet ?



DataNet: A labeled data-set for Network ML

• At the Barcelona Neural 
Networking Center we 
want to build DataNet

• This is the enabler of 
research in Graph Neural 
Networks

• An experimental test-bed 
to produce datasets for ML

• Real-world networks with 
evolving complexityLayer 2 Connectivity          6 x Cisco WS-C3650-48TD-L

Layer 3 Connectivity    30x Cisco ASR1001X-2.5G-K9

1 Gbps per link

Traffic Generators

10 Gbps
per link

Traffic Capture

Control
Plane 

Storage



Barcelona Neural 
Networking Center



Barcelona Neural Networking Center

• Our goal is to become the enablers in 
the application of ML to networking

1. DataNet à An experimental testbed
to produce data-sets for ML applied
to Networking

2. RouteNet à An open-source
implementation of GNN for
Computer Networks
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1.- Introduction and Motivation  
 
Network operation, management and optimization are built based on network models. A network 
model is a digital representation of the physical and logical networking infrastructure that it is 
able to understand the complex relationship between the different network characteristics. This 
is also known as digital twin. As examples of digital twins: a twin can estimate what will be the per-link 
utilization for a particular input traffic in a data center, predict the QoE for a set of flows in an access 
network or estimate the resulting network state if a link fails in an ISP network. 
 
Typically, such network models operate in conjunction with management and/or optimization 
algorithms. In such scenarios the network administrator configures the network policy (goals) in the 
algorithms that uses the network model to obtain the configuration that meets the goals.  Then the 
optimization algorithm is tasked to explore the configuration that meets the goals of the network 
administrator. An example of this is Traffic Engineering, where the goal is finding a routing configuration 
that keeps the per-link utilization below the per-link capacity. Since the dimensionality of the 
configuration is typically very large, efficient optimization strategies reduce them by using expert 
knowledge. The networking community has developed over decades a large set of network models and 
optimization strategies [1]. 
 
One of the fundamental characteristics of network operation, management and optimization is that we 
can only operate what we can model. For example, in order to optimize the jitter of the packets 
traversing the network we need a model able to understand how jitter relates to other network 
characteristics. In the field of fixed networks many accurate network models have been developed in 
the past, particularly using Queuing Theory [2][3]. However, such models make some simplifications like 
assuming some non-realistic properties of real-world networks (e.g., generation of traffic with Poisson 
distribution, probabilistic routing)[4]. As a result, they are not accurate for large networks with realistic 
network configurations.  
 
Recent advances in Artificial Intelligence (AI) [5] have led to a new era 
of Machine Learning (ML) techniques such as Deep Learning [6]. This 
has attracted the interest of the networking community to try to take 
advantage of these novel techniques to develop a new breed of 
models, particularly focused on complex network scenarios and/or 
metrics [7]. 
 
In this context relevant research efforts are being devoted into this new 
field. Researchers are using neural networks to model computer 
networks [8], to then employ such models for network optimization 
[9][10], in some cases in combination with advanced strategies based 
on Deep Reinforcement Learning (DRL) [4][11][12]. 
 

“ML applied to Networking 
has not outperformed yet 

traditional mechanisms 
because state-of-the-art 

proposals use neural 
networks that cannot learn 

and model networks. 
Computer networks are 

fundamentally represented 
as graphs (topology, routing, 

etc.)” 
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